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Abstract
Neural networks based vocoders have recently demonstrated the
powerful ability to synthesize high quality speech. These mod-
els usually generate samples by conditioning on some spectrum
features, such as Mel-spectrum. However, these features are
extracted by using speech analysis module including some pro-
cessing based on the human knowledge. In this work, we pro-
posed RawNet, a truly end-to-end neural vocoder, which use a
coder network to learn the higher representation of signal, and
an autoregressive voder network to generate speech sample by
sample. The coder and voder together act like an auto-encoder
network, and could be jointly trained directly on raw wave-
form without any human-designed features. The experiments
on the Copy-Synthesis tasks show that RawNet can achieve the
comparative synthesized speech quality with LPCNet, with a
smaller model architecture and faster speech generation at the
inference step.
Index Terms: neural vocoder, speech synthesis, raw waveform
modelling, end-to-end vocoder

1. Introduction
Traditional vocoding approaches [1] [2] [3] are commonly com-
posed of an speech analysis module and a waveform generation
module. The analysis module is responsible for extracting the
acoustic features from the raw waveform while the waveform
generator for re-constructing audio signal from the features.
Some commonly used acoustic features are extracted, based on
some simplified speech production models, such as the source-
filter model [4] [5] [6]. For example, in [1] and [2], the acous-
tic features used include the log fundamental frequency (lf0),
voice/unvoiced binary value (uv), the spectrum and band aperi-
odicities. However, the underlying assumption of these models,
for one thing make it complicated to generate the waveform, for
another often introduce some flaw into the generated speech.

More recently, neural vocoders use neural networks to di-
rectly learn the transformation from the acoustic features to au-
dio waveform such as WaveNet [7], LPCNet [8], WaveGlow [9]
and FFTNet [10]. They could partly overcome the above men-
tioned disadvantages of the traditional methods, by getting rid
of the complicated human-designed speech analysis and gener-
ation step. These neural network-based methods that directly
synthesize raw speech waveform from acoustic features, could
achieve the state-of-art performance in text-to-speech synthe-
sis. However, the waveform generation is quite slow due to the
complicated model structure and the autoregressive property. In
addition, the performance of these neural vocoder is also partly
limited by the conditioning features, which are extracted based
on the simplified speech production models.

The acoustic feature is a low-denominational representation
of raw waveform. In a text-to-speech task, it’s often predicted
by the acoustic models, and is then used to reconstruct the pre-
dicted waveform. As the acoustic model is trained to minimize

the gap between the ground-true acoustic features and predicted
features, it’s better to use these feature which is easy to be pre-
dicted by acoustic model, and easy to be extracted from raw
waveform, and easy to reconstruct waveform with high qual-
ity. These three condition could be used to check if it’s a good
acoustic feature for speech synthesis.

To extract representative features from raw waveform, raw
waveform based methods have been explored in many speech-
related tasks. In speech recognition, [11] proposed the recog-
nition model which is based directly on the raw waveform, and
achieve better result than the model trained with hand-crafted
acoustic features. In [12], the raw waveform is directly fed into
the neural model for both speech and speaker recognition tasks.
[12] shows the benefits gained in terms of model convergence,
performance, and computational efficiency. [13] explores the
representative feature directly from a large number of sound
data, and yields the state-of-art result in acoustic object clas-
sification task. In [14], a fully convolutional network is used
to enhance speech directly using raw waveform as model input
and target.

Inspired by the success of the above methods, it is possi-
ble to further improve the existing neural vocoder by embed-
ding the feature extractor model as part of the vocoder network
and jointly optimizing it within the whole vocoder framework.
In this paper, we propose an truly end-to-end neural vocoder
architecture called RawNet to accomplish this goal. Here the
term end-to-end means that RawNet takes the raw signal as in-
put and can generate raw waveform as output, as autoencoder
model works. RawNet is composed of a coder network which
extracts acoustic features from raw waveform, and a voder net-
work which reconstructs high quality speech waveform from
features. These two components correspond to the analysis and
synthesis module of a traditional vocoder. To our knowledge,
this is the first time to use a single unified network to train
the feature extraction network and speech synthesis network di-
rectly on raw waveform.

The rest of the paper is organized as follows. Section 2
introduces some related works, including speech feature extrac-
tion, using auto-encoder model for processing speech signal,
and some popular neural vocoders in the field of speech synthe-
sis. Section 3 presents the proposed model RawNet, and some
crucial training strategies. Section 4 shows the experimental
settings and results. Conclusion and future works are provided
in the section 5.

2. Related Works
The architecture of RawNet is like to an autoencoder model, in
which the encoder and decoder networks could correspond the
coder and voder network of RawNet. There are some researches
in employing an auto-encoder for extracting relative parameters
for speech synthesis task. For example, [15] [16] use an au-
toencoder to extract excitation parameters, which is required by
a traditional vocoder. In [17], an autoencoder based, non-linear
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Figure 1: The model architecture of RawNet, which mainly con-
sists of two parts: coder and voder. The upper part is the
coder network which extracts acoustic features from raw wave-
form, and the bottom part is the voder network which generates
speech.

and data-driven method is used to extract low-dimensional fea-
tures from the FFT spectral envelop, instead of using the speech
analysis module based on human knowledge. [17] also con-
cludes that the proposed model outperforms the one which is
based on the conventional feature extraction. The difference of
RawNet to the above mentioned methods is that, RawNet di-
rectly takes waveform samples as input instead of just treats
autoencoder as a feature dimension reduction method.

Our work resembles these works in that we use the similar
auto-encoder based model framework for extracting higher rep-
resentative features for speech synthesis. However, the novel-
ties and contributions of our work is that (1) we directly extract
the desired features from the raw waveform instead of mod-
elling on the FFT spectral envelop, (2) we embed the feature
extraction network into the unified end-to-end model to gener-
ate speech.

3. RawNet
This Section introduce the RawNet model. Figure 1 shows its
overview architecture, which includes a coder network that ex-
tracts acoustic features from raw waveform, and a voder net-
work that generates waveform conditioned on the acoustic fea-
tures. These two parts are jointly trained in a single network,
but could be used separately, corresponding to the analysis and
synthesis procedure in a tradition vocoder system. More details
are provided in this section.

3.1. Coder network

The coder network is used for feature extraction. The main
components of the network are stacked convolutional layers,
dense layers and GRU layers, as shown in the upper part of
figure 1. By stacking multiple convolutional layers, the net-
work can learn the high-level representation through a serious
of lower-level filters. The convolutional architecture we used is
similar to the convolutional network proposed in [13], which is
used to learn the sound representation. By extending the net-
work with GRU and dense layer, we empower the model with
the ability to capture long-term relationship.

Since sound can vary in temporal length, the coder network
has to handle inputs with variable lengths. It can be done by
control the stride step in the convolutional layers, and the pool-
ing size of pooling layers. As convolutional layers are invariant
to location, we can convolve each layer to control the output
length. Consequently, the frame size of the learned acoustic
features are only determined by the convolutional and pooling
layers.

3.2. Voder network

The voder network is for speech generation given acoustic fea-
tures. Its structure is similar to that of LPCNet [8], but we make
some modifications. When generating the next sample, LPCNet
takes as the inputs the current predicted sample, current pre-
dicted excitation, global features from frame-rate network and
linear prediction of current sample. Different from LPCNet’s
complicated input information, the voder network of RawNet
only takes the current predicted sample and the conditioning
acoustic features as input, which are concatenated together to
be fed to the following layers.

The extracted acoustic features are first fed into two con-
volutional layers, followed by two dense layers. The output
of the dense layer has the same length with the frame-length,
and then is up-sampled to audio-sample length. In out experi-
ments, we use a simple up-sampling method, i.e. repeating it
K times, where K is the frame size. The up-sampled features,
concatenated with previous predicted sample, are feed into a 2
GRU layers and a DualFC layer and a softmax function. Finally,
sample can be generated by sampling.

Rather than scaling the sample values into a fixed range of
values before feeding them into the network, we use u-law to
apply the companding transformation to the sample values. An
embedding representation is learned for each u-law level, essen-
tially learning a set of non-linear functions to be applied to the
u-law values.

3.3. Sampling method

It’s reported in the paper of LPCNet [8] and FFTNet [10] that
directly sampling from the output distribution can sometimes
result in excessive noise. To address this problem, FFTNet pro-
posed a conditional sampling method, which is multiplying the
output logits by a constant value, i.e c=2, for voiced sound, and
keep them remained for the unvoiced region. LPCNet replaces
the binary voicing decision with a pitch correlation, which could
be used to scale the output logits continuously.

In our experiments, we compared the multinomial sam-
pling, conditional sampling, LPCNet’s pitch correlation based
sampling, and the simple argmax method. However, we found
that the simple argmax method could generate very clear sam-
ples with the least noise, which is in accord with the results of
the original WaveNet [7] and [18].



As the conditional sampling and LPCNet’s method require
pitch and pitch correlation to scale the output logits, and our
Coder network does not learn these information explicitly. To
use the conditional sampling or LPCNet’s pitch correlation
based sampling methods, we should extract pitch and pitch cor-
relation as additional acoustic features. For example, we used
the REAPER [19] tool to extract these features in the compari-
son experiment.

3.4. Noise injection

Due to the training error, the synthesized samples always con-
tain some amount of noises. When generating samples, the net-
work will generate samples that get noisier over time because
of the auto-regressive property. If the voder network takes these
noisy samples as input to generate the next sample, more and
more randomness would be introduced to the network during
training. As a result, the output samples will contain some click-
ing artifacts. To address this problem, we inject random noise
to the input during training.

When training, we inject some Gaussian noises from
N (0, 0.2) to the raw signal before feeding them into the voder
network. And Gaussian noises from N (0, 0.1) are injected to
the input of coder network. This injection strategy is adopted to
ensure that the model could see different training data at each
training iteration and could avoid over-fitting effectively, as the
experiments indicate.

3.5. Post-synthesis denoising

Injecting noise enable the networks to see more training data
and to avoid over-fitting problem. An additional benefit of in-
jecting noise is to reduce the clicking artifact in the voiced part
of sound. However, it also introduces a small amount of buzz
noise to the silence part of unvoiced sound. The noise is some-
times audible with a low magnitude and only occurs in the silent
part. Therefore, we apply a simple energy-based method [20]
which is a baseline method in voice activity detection to reduce
these noises. Experiments show that this method could almost
eliminate these noises.

4. Experiments
To evaluate the power of RawNet, We conduct an AB listen-
ing test to compare the quality of the generated speech from
RawNet and LPCNet. We will open-source the code with two
pre-trained models and some generated samples, which is avail-
able at https://github.com/candlewill/RawNet.

4.1. Experimental setup

As the proposed system can be either speaker-independent or
speaker-dependent, we evaluate the model in both setting using
three different datasets. The CMU Arctic dataset [21] is used
to train a speaker-independent vocoder. The CMU ARCTIC
consists of around 1150 utterances for each speaker with both
female and male. To reduce the accent variance, four speak-
ers were selected consisting of two male speakers, bdl and rms,
and two female speakers, slt and clb. For speaker-dependent
experiments, we use a private Chinese dataset called mufei and
LJ-Speech 1.1 [22] dataset. The former contains 20-hour audio
from a single female speaker, while the latter consists of ∼24-
hour of speech from a single female speaker. We excluded 100
samples from each dataset for evaluation test.

When training, the input to coder net is a short audio clip,
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Figure 2: Acoustic features comparison: the top layer shows the
embedded features learned from the Coder; the middle layer is
the illustration of the features used in LPCNet; the bottom layer
is the F0 contour of the speech.

which contains 3200 samples (i.e. 200ms for 16k speech). The
clip is randomly selected from the original wave. The output
of the coder are 20 frames of features, with 64 dimensions
per frame. The training epoch in our experiments is 1500,
with a batch size of 128*4. Training was performed on four
Nvidia P40 GPUs with 22GB memory size. The implementa-
tion frameworks is Keras/TensorFlow. The cross-entropy loss
is used as the loss function in the experiments. The weight ma-
trices of the network are initialized with the normalized initial-
ization, and the bias vectors are initialized to be 0. AMSGra
[23] ] optimization method (Adam variant) is used to update the
training parameters, with an initialized learning rate of 1e-2.

4.2. Subjective evaluation

AB preference tests were conducted to assess the generated
speech quality. In AB preference tests, for each task, we ran-
domly selected 15 paired samples A and B from RawNet and
LPCNet. There are 20 raters participating in the test, with 10
female and 10 male raters. The raters were asked to choose
the sample with better quality. As Figure 3 shows, the gen-
erated speech by RawNet gains more preferences than those
of LPCNet. More specifically, the difference in the speaker-
independent task is larger than those in the speaker-dependent
task.
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Figure 3: A/B Preference Test Result of RawNet and LPCNet
in three different datasets. The X-axis represents the datasets,
while the y-axis indicates the percentage of preference.

4.3. Visualization

Figure 2 illustrates the features extracted by RawNet coder,
Bark-frequency cepstral coefficients (BFCC) [24] and pitch pa-
rameters (period, correlation) used in LPCNet, and the pitch
contour of one single utterance. The extracted features are sim-
ilar in a short time, which is in accordance with the fact that
speech is stable or periodic in a short time. This shows implic-
itly that the learned features should be reasonably good.

The bottom layer presents the F0 contour of the utterance,
with the zero value indicating the current phone is unvoiced.
The middle layer also show the F0 information in the first di-
mension, which is highlighted by a red box. From the top layer,
we can observe that the F0 can be extracted by the coder. As
highlighted by the red box, the dark area indicates small F0
value or unvoiced and vice versa. This overall F0 contour is
similar to that shown in the bottom layer. It indicates that the
Coder of RawNet can learn the low-level information from sig-
nal, without human prior knowledge.

The effect of using post-synthesis denoising can be illus-
trated in Figure 4. In the top spectrogram, we can see the
”clicks” in the highlighted box. After using the post-synthesis
denoising, we can remove the ”click” almost completely.

5. Conclusion
This paper proposes a new vocoder, which uses the raw wave-
form as input and output the raw waveform. The coder and
voder can be trained jointly. Training such a network is a chal-
lenge, but we adopted several tricks to get the network perform
well. As a result, the subjective evaluation shows that our pro-
posed model can produce more natural/preferred speech than
the recently proposed LPCNet. Visualization of the learned fea-
tures helps illustrating that RawNet can extract reasonably good
features from the raw waveform.

This work only proposes a plausible vocoder based on raw
waveform. Some interesting future work based on this model
can be conducted. For example, the embedded features learned
from our coder can be used in other speech synthesis framework
or any other speech-related tasks.

(a)

(b)

(a)

(b)

Figure 4: The spectrogram comparison: the top layer indi-
cates the spectrogram of utterance generated by RawNet with-
out post-synthesis denoising, while the bottom layer gives the
one with post-synthesis denoising. The green box region points
out the difference.
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